

Executive Summary

The number of big data applications in the scientific domain is continuously increas-

ing. R is a popular language among the scientific community and has extensive support

for mathematical and statistical analysis. Hadoop has grown into a universally used

tool for data manipulation. There are a number of ways of integrating these two tools:

Hadoop streaming, RHIPE (R and Hadoop Integrated Programming Environment),

and RHadoop. We tested these methods using a basic wordcount application. Word-

count might not be an all encompassing benchmark, but it provides us with a stable

base with very few opportunities for human error. We measured the performance of

the three methods on small files, checked their scalability, and tested their e↵ectiveness

in handling large files. Of the three options, we found RHIPE to be generally e↵ective,

scalable, and consistent, but less customizable. RHadoop tended to be slightly more

e�cient than R Streaming in performance, yet failed very frequently in our scalability

testing.

Keywords: R, big data, Hadoop, Rhipe, RHadoop, Streaming

2

Contents

1 Introduction 4

2 Background 4
2.1 R . 5
2.2 Python . 5
2.3 Hadoop . 5
2.4 Hadoop Streaming . 5
2.5 RHadoop . 6
2.6 RHIPE . 6

3 Methods 6
3.1 Small File Tests . 7
3.2 Scalability Tests . 8
3.3 Large File Tests . 8
3.4 Configuration . 8

3.4.1 Hadoop Streaming . 8
3.4.2 RHadoop . 9
3.4.3 RHIPE . 10

4 Results 10
4.1 Results for Small file tests . 11

4.1.1 Python Streaming and R Streaming 11
4.1.2 RHadoop . 11
4.1.3 RHIPE . 12
4.1.4 Optimal Reducer/Mapper ratio . 12
4.1.5 Code Optimization . 12

4.2 Results for Scalability tests . 12
4.3 Results for Large tests . 13

5 Best Practice Recommendation 14

6 Conclusion 16

7 Appendix 17
7.1 Code Used . 17

7.1.1 Python Streaming . 17
7.1.2 R Streaming . 18
7.1.3 RHadoop . 19
7.1.4 RHIPE . 20

3

1 Introduction

The extensive resources available on the Rustler supercomputer far exceeds the norm but
the datasets are growing exponentially; just 6 years ago 100 gigabytes was atypical, now
datasets reach terabytes in size. These large datasets drive research around the world. For
instance, the NASA spacecrafts monitor everything from our home planet to distant galaxies
and send back images and information to Earth. Hundreds of terabytes of data are received
every hour; the data needs to be processed to understand Earth and the universe beyond (1).
The computation for research is carried out in a two-step process. First, the datasets are
processed using Apache Hadoop, Apache Spark, Presto, or some data processing tool. Then,
the data is analyzed using R, Python, or Scala. The performance of this two-step process is
both machine and workload dependent. Over the past years, R- a script style programming
language has become a popular analytic environment for many domain science fields due to
variety of existing scientific packages. We have investigated various solutions of integrating
R with Hadoop and evaluated the pros and cons of each approach. We have conducted
performance comparison studies for utilizing those approaches, including RHadoop, RHIPE
(R and Hadoop Integrated Programming Environment) , and Hadoop streaming on a 48 node
cluster. In this paper, we report our performance evaluation results, lessons learned, and
recommend best practices when supporting R for big data analysis with high performance
resources.

A recently published paper ’Optimising parallel R correlation matrix calculations on
gene expression data using MapReduce’ (2) compared RHIPE performance with a variety
of R parallel packages. Concluding that ’The performance evaluation found that the new
MapReduce algorithm and its implementation in RHIPE outperforms vanilla R and the
conventional parallel algorithms implemented in R Snowfall. We propose that MapReduce
framework holds great promise for large molecular data analysis, in particular for high-
dimensional genomic data such as that demonstrated in the performance evaluation described
in this paper. We aim to use this new algorithm as a basis for optimising high-throughput
molecular data correlation calculation for Big Data.’

In ’Big Data Analytics Predicting Risk of Readmissions of Diabetic Patients’ (3) Salian
and Dr. Harisekaran use the RHadoop package to analyze data sets searching for a better
understanding of the issues that can lead to readmission. Their main emphasis for the
RHadoop package was the availability of rhbase which allowed them to use HBase and
access their data using sql-like queries.

2 Background

This section provides an overview of R and Python, and the di↵erent ways of integrating
R with Hadoop, namely RHadoop, RHIPE, and Hadoop Streaming. It also discusses the
advantages and disadvantages of each.

4

2.1 R

R is an open source programming language for performing statistical and predictive analysis,
data mining and visualization functions on data. R is the most popular language for these
purposes. As the data gets large, issues begin to surface because of memory limitations.
Large, complex datasets can be structured, semi-structured, or unstructured and typically
do not fit into memory. Hence, it is natural to attempt to scale up R computations using
Hadoop.

R has a vast mathematical and statistical package selection on CRAN, which means that
many functionalities are readily available for use. The robust supporting community for R in
the data industry adds to the convenience. R integrates well with other languages like C++,
Java, and C, thereby giving R users great flexibility. R provides extensive native mathemat-
ical support. For instance, R’s array-oriented syntax makes the translation between math
and implementation easier.

But, the learning curve for R is steep and not very suitable for data with noise. Also, R
is slow particularly for non-vectorized code and is slow on Input/Output operations.

2.2 Python

Python, yet another language of choice for the scientific community is geared towards more
general programming use. It has numerous packages ranging from web applications and
artificial intelligence to 3D modeling and system administration.

The advantage of Python is that it is very easy language for programmers to learn. It is
an object-oriented language, hence it is easier to write large-scale robust code in Python. It
is convenient to parse data in python and hence is suitable for data with noise and scrapping
purposes.

Though there are tools like Panda, Numpy, SciPy, etc that help with mathematical and
statistical applications, it is still behind R and related support is limited.

2.3 Hadoop

Apache Hadoop is an open source Java framework for processing and querying large amounts
of data on large clusters of commodity hardware. It is the most commonly used framework
for Big Data processing. Two main features of Hadoop are HDFS and mapreduce.

2.4 Hadoop Streaming

Hadoop Streaming enables us to write map and reduce functions in any programming or
scripting language that supports reading data from standard input and writing to standard
output. This feature makes Hadoop Streaming very flexible and can be easily used by a
large number of users. R and Python are two common choices for such a language. We will
refer to these two methods as R Streaming and Python Streaming.

There are a lot of parameters that can be customized, for example, number of mappers,
number of reducers, jvm memory, input format, output format etc. The default input format
for hadoop streaming jobs is TextInputFormat, which reads the data one line at a time. (4)

5

A well detailed evaluation of Hadoop Streaming given in More Convenient More Over-
head: The Performance Evaluation of Hadoop Streaming (5) concluded that the linux pipe()
and Java Read/Write calls were the cause of vast overhead in Hadoop streaming.

2.5 RHadoop

RHadoop is a family of R packages that act as a wrapper for Hadoop Streaming and allow
the execution of Hadoop jobs without ever leaving the application. It has separate packages
ravro, plyrmr, rmr, rhdfs, and rhbase; the main two components being rhdfs and rmr. Rhdfs
is primarily responsible for the handling of HDFS operations such as file manipulation,
reading and writing, and directory traversal. Rmr is responsible for packaging of the map
and reduce functions, hadoop configuration parameters, and the job submission.

RHadoop is easy to install and setup. It provides support for HBase and Avro. Like R
Streaming, there exist numerous customizable parameter options like number of mappers,
number of reducers, combiner, vectorized reduce, etc. The version of RHadoop used for
testing was 3.3.0.

2.6 RHIPE

RHIPE is a single vast package that contains both HDFS and Hadoop management oper-
ations. Installation can be a little tricky because of the dependencies, especially Protocol
Bu↵ers, but once configured it is very reliable and stable. It is e�cient and scales well with
data size. It does not depend on the Hadoop streaming jar and comes with a custom in-
putformat: LApplyInputFormat. LApplyInputFormat allows the file processing to be done
chunk wise instead of the default line at a time. Not using the standard Hadoop streaming
however deprives it of certain functionalities, like the ability to swap out input formats.

A key benefit of RHIPE is the serialization and deserialization of R data structures
allowing the user to call

1 rhcollect(key, [scalar, list, data.frame, matrix]).

As of version 0.65, RHIPE is capable of serializing scalar vectors such as integers, characters,
numerics, logicals, complex, and raw, and lists of scalar vectors and attributes of objects.
RHIPE can also serialize data frames, factors, and matrices. (6) With this knowledge, we
can easily emit many R data structures and read them in the reducer.

3 Methods

We used the typical wordcount program for benchmarking. We ran tests to measure the
consistency, scalability, and robustness of each package. Initially we ran tests on a rela-
tively small file with di↵erent combinations of mappers and reducers with and without a
combiner. We expected to determine the optimal parameters for best performance using the
above technique. We then performed scalability testing using the parameters found in the
small file tests. Finally, we performed tests on a very large file for the packages that were
scalable to test for resource exhaustion. The datasets used were downloaded from Google

6

Book N-gram library. (7)

We used the following systems configuration for our tests:
CentOS 6.5
Cloudera Hadoop Version 5.1.0
RHadoop version 3.3.0
RHIPE version 0.75
R version 3.1.2
Environment configuration:

Listing 1: /̃.bashrc

1 export JAVA HOME=/usr/lib/jvm/jre�1.7.0�openjdk.x86\ 64
2 export HADOOP HOME=/usr/lib/hadoop
3 export HADOOP EXECUTABLE=/usr/bin/hadoop
4 export HADOOP BIN=/usr/lib/hadoop/bin
5 export HADOOP=$HADOOP HOME
6 export HADOOP CONF DIR=/etc/hadoop/conf
7 export HADOOP EXAMPLES JAR=/usr/lib/hadoop�mapreduce/hadoop�mapreduce�examples.jar
8 export HADOOP STREAMING JAR=/usr/lib/hadoop�mapreduce/hadoop�streaming.jar
9 export HADOOP STREAMING=$HADOOP STREAMING JAR

10 export HADOOP VERSION=hadoop2
11 export HADOOP LIBS=/usr/lib/hadoop/client:/usr/lib/hadoop/lib:\
12 /usr/lib/hadoop:/usr/lib/hadoop�hdfs:/usr/lib/hadoop�yarn:\
13 /usr/lib/hadoop�mapreduce

3.1 Small File Tests

Dataset used:
googlebooks-eng-all-5gram-20120701-un (9.4GB)

The goal of the small tests was to quickly determine parameters that work best for the
particular file. We started with an estimate of the number of mappers and reducers needed
for the file, intentionally erring on the smaller side on both those values ((75, 15) in partic-
ular). We then increased the number of mappers keeping the number of reducers constant
till a further increase showed no considerable decrease in time taken for the job. The next
step was to keep the number of mappers constant at this optimal value, and increase the
number of reducers till a further change does not have a considerable e↵ect. The above runs
are without using a combiner. We then took the thus found optimal values for the number
of mappers and reducers and ran this combination with the combiner.

The above parameters are the main ones for Python Streaming, R Streaming and RHIPE.
But RHadoop has a couple of other parameters that a↵ects performance like in.memory.combine
and vectorized.reduce. Both of those can be set to either TRUE or FALSE. We ran tests for
all possible configurations of these settings.

7

In addition to figuring out the best parameter settings for each package, the purpose of
these small tests were to get an idea of how the packages performed relative to each other.

3.2 Scalability Tests

Datasets used:
googlebooks-eng-all-5gram-20120701-un (16.7GB)
googlebooks-eng-all-5gram-20120701-on (25.2GB)
googlebooks-eng-all-5gram-20120701-be (45.7GB)
googlebooks-eng-all-5gram-20120701-in (77.7GB)
googlebooks-eng-all-5gram-20120701-of (104.3GB)
googlebooks-eng-all-5gram-20120701-th (285.1GB)

The goal of these tests was to determine which of the packages could scale up to larger
files and how the performance changed with the file size, whether there was a logarithmic,
linear, or exponential increase in time taken for the job with a linear increase in file size.
These tests give us an estimate for the performance under di↵erent workloads. Moreover,
these tests are designed to let us conclude on a package that works best in general in terms
of performance.

3.3 Large File Tests

Datasets used:
googlebooks-eng-all-5gram-20120701-t* (390GB)
googlebooks-eng-all-5gram-20120701-* (700GB)

The aim of these is to stress test the packages found to scale well in the Scalability tests, to
check if they can handle file sizes of a few hundred Gigabytes.

3.4 Configuration

All three packages o↵er a number of parameters and configurations that can be tuned to
increase performance. For the individual packages these configurations can be adjusted as
discussed below.

3.4.1 Hadoop Streaming

Listing 2: Hadoop streaming

1 $ hadoop jar ${HADOOP STREAMING JAR} \
2 �Dmapreduce.job.name=”Wordcount�book.txt” \
3 �Dmapreduce.job.maps=100 \
4 �Dmapreduce.job.reduces=20 \
5 �Dmapreduce.map.java.opts=�Xmx11500M \
6 �Dmapreduce.reduce.java.opts=�Xmx11500M \
7 �files ./mapper.R,./reducer.R \

8

8 �mapper ./mapper.R \
9 �reducer ./reducer.R \

10 �combiner ./reducer.R \
11 �input ./data/book.txt \
12 �output ./output/book \

We begin the streaming process by calling the hadoop(Line 1) shell script with the
jar(Line 2) parameter pointing at the Hadoop Streaming jar (specified by the
HADOOP STREAMING JAR environmental variable). Parameters and behavior of stream-
ing then follow prepended with a -D (Line 3). In the above example Lines 2-6 specify the
job name, number of mappers, number of reducers, and the amount of memory that should
be reserved for the mappers and reducers.

Once the configuration parameters are set the files to be transfered to the data nodes
are specified Line 7, these files can be anything and generally will include the mapper and
reducer files, other possibilities include jars, scripts, or text files to be used for caching.
Lines 8-10 specify the mapper,reducer, and combiner scripts and supply the HDFS input
(Lines 11-12) and output paths.

More detailed information on the options available to hadoop streaming can be found on
the Apache Hadoop Streaming page (4) or by running the -info command on the Hadoop
Streaming jar.

1 hadoop jar ${HADOOP STREAMING JAR} �info

3.4.2 RHadoop

1 bp =
2 list(
3 hadoop =
4 list(
5 D = paste(”mapred.job.name=”, args[[1]], sep=’’),
6 D = ”mapreduce.map.memory.mb=11500”,
7 D = ”mapreduce.reduce.memory.mb=11500”,
8 D = ”mapreduce.map.java.opts=�Xmx11500M”,
9 D = ”mapreduce.reduce.java.opts=�Xmx11500M”,

10 D = paste(”mapreduce.job.maps=”, ”10” , sep=’’),
11 D = paste(”mapred.reduce.tasks=”, ”15” , sep=’’)
12))
13

14 mapreduce(
15 input = ”hdfs:///book.txt”,
16 output = ”hdfs:///output/book”,
17 input.format = ”text”,
18 map = wc.map,
19 #reduce = wc.reduce, // when vectorized.reduce = F
20 reduce = wc.vectorized.reduce,
21 vectorized.reduce = TRUE,
22 in.memory.combine = TRUE,

9

23 combine = TRUE
24)

Similarly to the previous hadoop streaming example we begin by specifying the job name,
mapper and reducer memory limits, the Java VM memory limits, and mapper and reducers
counts. (Line 9) The next block submits the hadoop job using the mapreduce function.
Some of the parameters of interest are vectorized.reduce and in.memory.combine. (Lines
21-22)

”in.memory.combine- Apply the combiner just after calling the map function, before re-
turning the results to hadoop. This is useful to reduce the amount of I/O and (de)serialization
work when combining on small sets of records has any e↵ect (you may want to tune the input
format to read more data for each map call together with this approach)”

”vectorized.reduce - The argument to the reduce should be construed as a collection of
keys and values associated to them by position (by row when 2-dimensional). Identical keys
are consecutive and once a key is present once, all the records associated with that key will
be passed to the same reduce call (complete group guarantee). This form of reduce has been
introduced mostly for e�ciency reasons when processing small reduce groups, because the
records are small and few of them are associated with the same key. This option a↵ects the
combiner too.” (8)

3.4.3 RHIPE

1 mapred = list(
2 mapred.max.split.size=as.integer(1024⇤1024⇤block size)
3 , mapreduce.job.reduces=10
4)
5 rhipe.results <� rhwatch(
6 map=mapper, reduce=reducer,
7 input=rhfmt(”hdfs:///book.txt”, type=”text”),
8 output=”hdfs:///output/book”,
9 jobname=paste(”rhipe wordcount ”, 1 ,sep=”�”),

10 mapred=mapred)

We create a named list of parameters, specifically Line 2 provides the chuck size in bytes
and sets the number of reducers Line 3. The job executions Line 5 then receives the map
and reduce functions Line 6. RHIPE won’t read text documents by default and needs Line
7 for conversion we can either specify an output path Line 8 or NULL, and finally supply
the options (Line 9).

4 Results

The three layer testing proved successful at determining advantages and drawbacks of each
package. We were able to determine an order of performance immediately after the first test.
The second easily chose RHIPE and Python over RHadoop and R Streaming, both of which
proved successful and capable even in the large file tests.

10

4.1 Results for Small file tests

The following are the times for running wordcount on a file of around 10GB. We found the
optimal reducer to mapper ratio, and the benefits of using a combiner. We saw that Python
Streaming was faster than R Streaming; a great performance improvement was achieved in
RHadoop by making the code vectorized; RHIPE considerably outbeat other options in R.
We also noticed that our choice of R functions to use had a great impact on performance.

4.1.1 Python Streaming and R Streaming

Mappers # Reducers Python Streaming R Streaming
75 20 1mins, 27sec 6mins, 34sec
86 20 1mins, 22sec 7mins, 1sec
100 20 1mins, 10sec 5mins, 39sec
120 20 1mins, 3sec 4mins, 22sec
100 25 1mins, 11sec 5mins, 10sec
100 30 1mins, 12sec 5mins, 12sec
100 35 1mins, 15sec 5mins, 24sec

The above table has run times for di↵erent numbers of mappers and reducers for Python and
R Streaming. It can be seen that Python Streaming is consistently faster than R Streaming.
This is because the default input format used by Streaming is TextInputFormat which reads
in line by line, and the input-output operations in R are slower than in Python.

120 mappers and 20 reducers, i.e. a reducer to mapper ratio of 0.17, gave us the lowest
time in an average of three runs with the same settings. Also, these times are with the
combiner turned on which we found to be faster than the case of not using the combiner for
both Python and R Streaming.

4.1.2 RHadoop

Mappers # Reducers None C C + IMC + VR
75 20 11mins, 0sec 19mins, 52sec 5mins, 01sec
86 20 10mins, 36sec 19mins, 44sec 4mins, 54sec
100 20 10mins, 54sec 18mins, 33sec 4mins, 4sec
120 20 11mins, 6sec 20mins, 3sec 3mins, 43sec
100 25 9mins, 46sec 15mins, 59sec 4mins, 25sec
100 30 8mins, 34sec 15mins, 33sec 4mins, 17sec
100 35 7mins, 25sec 14mins, 19sec 4mins, 9sec

In the above table, C stands for combiner, IMC stands for in.memory.combine, and VR
stands for vectorized reduce. The column headings represent the parameters that were set
to TRUE for the corresponding run.

11

RHadoop gives a poor performance, it takes almost double the time as R Streaming in
the cases without vectorized reduce set to true. This is surprising since RHadoop is just a
wrapper around R Streaming. But on using vectorized reduce, RHadoop actually outbeats
R Streaming.

Another peculiar result with RHadoop is that the runtimes without the combiner is faster
than with the combiner when vectorized reduce is not used. This is di↵erent from what is
observed in the Python and R Streaming cases and also in the case of RHIPE as shown
below.

4.1.3 RHIPE

Mappers # Reducers No combiner With combiner
75 20 6mins, 11sec 2mins, 37sec
86 20 5mins, 49sec 2mins, 15sec
100 20 5mins, 31sec 2mins, 2sec
120 20 5mins, 41sec 1mins, 47sec
100 25 5mins, 48sec 2mins, 3sec
100 30 5mins, 58sec 2mins, 2sec
100 35 6mins, 2sec 2mins, 6sec

RHIPE performed consistently with the variable number of mappers and reducer, the overall
time was cut in half with the use of a combiner. Similarly to Hadoop Streaming the optimal
time was found with a chunk size of 80MB which resulted to 120 mappers and 20 reducers.

4.1.4 Optimal Reducer/Mapper ratio

The above figure shows the comparative performance of the four packages. We can order
them with regards to performance as Python Streaming, RHIPE, RHadoop and R Streaming.
Thus, the use of other packages as opposed to the simple to install and use R Streaming does
give us a performance advantage. It can also be seen that 120 mappers and 20 reducers (a
reducer to mapper ratio of 0.17) consistently had the lowest time for all the four methods.

4.1.5 Code Optimization

The graphs shows the drastic improvement in performance that resulted from using fixed
string searches instead of regular expressions for parsing the input. We can see that just this
small change led to a reduction in time of more than 50%. This improvement was consistent
over changes in number of mappers and reducers.

4.2 Results for Scalability tests

We have found RHIPE to be very reliable with the minimum additional configuration com-
pared to RHadoop and R Streaming which frequently failed on larger files.

12

Figure 1: Shows the variation of time to complete the job with respect to the reducer-mapper
ratio.

Figure 2: Performance impacts of regular ex-
pressions: with variation in the number of
mappers

Figure 3: Performance impacts of regular ex-
pressions: with variation in the number of re-
ducers

It can be seen from the graph that R Streaming, RHadoop and RHIPE all scale linearly
with an increase in workload for the worcount application. However, RHadoop proved to
be highly inconsistent since it failed a large proportion of the tests even for the cases it
sometimes succeeded on.

4.3 Results for Large tests

Large tests were only performed on the methods that successfully completed the Scalability
tests. Which were RHIPE and Python.

13

Figure 4: Shows the scalability of RHIPE, R Streaming and Python Streaming.

Size # Mappers # Reducers RHIPE Python
390GB 5058 843 31mins, 0sec 20mins, 10sec
390GB 6316 843 29mins, 59sec 18mins, 40sec
800GB 17621 843 40mins, 10sec 28mins, 25sec
800GB 17621 1000 1hr, 23mins, 8sec 45mins, 0sec
800GB 17621 2848 2hr, 0min, 15sec 1hr, 15min, 10sec

The above table demonstrates when resources are strained, requesting more mappers or
reducers, doesn’t increase performance. The testing cluster’s 64 nodes topped at about 750
active containers, in this case requesting 1000 reducers forced 250 to sit idle. Running the
large tests we expected memory problems to arise, similar to what RHadoop and R Stream-
ing both encountered in the previous test. However, both RHIPE and Python Streaming
performed very well, maintained linearity, and finished without problems.

5 Best Practice Recommendation

We have noticed a couple of improvements that should be kept in mind when developing R
related Hadoop applications. A significant time reduction can be achieved by replacing reg-
ular expressions with fixed characters, in our simple wordcount experiments processing time
decreased by approximately 45% even after mapper and reducer optimization was achieved.

Increasing the number of mappers and reducers doesnt always increase performance and
beyond the optimal ratio the time becomes minimally impacted. The continual increase of
either mappers or reducers eventually leads to performance degradation.

For RHadoop and Hadoop Streaming we can directly specify the mapper and reducer

14

counts using mapreduce.job.maps or mapreduce.job.reduces parameters. To specify the num-
ber of mappers in RHIPE we specify the chunk size in bytes using mapred.max.split.size.

fileSize/chunkSize ⇤ 1024 ⇤ 1024 = NumMappers

By default the number of mappers is chosen by the HDFS number of blocks, with the
default block-size being 64MB and in production 128MB. Given this a 1GB file will be
stored in 8 blocks, and given 8 mappers. However in RHIPE specifying mapred.max.split.size
to 64MB will give us 16 mappers. The same can be accomplished in Streaming by specifying
mapreduce.job.maps=16, however the block-size is the upper bound for chunk size. Hence,
we cannot request less than 8 mappers or request the chunk-size to be more than 128MB.

NumSplits / 1

chunkSize

Comparing Python streaming times to RHIPE, RHadoop, and R Streaming we can con-
clude that R I/O can be very slow when done line at a time as streaming does by default.
Depicted by the slow RHadoop and R Streaming times. RHIPE taking a di↵erent approach
reads chunks at a time, with speeds closer to Python streaming implying lower I/O over-
head. By supplying a custom InputFormat to the Hadoop streaming jar we should be able
to achieve comparable speeds.

In RHIPE testing the map and reduce functions does not have to be a cryptic guessing
game. We can simulate a mapper using:

1 data<�list(list(1,”Hello World”),list(2,”Long horn”))
2 map.keys<�lapply(data,”[[”,1)
3 map.values<�lapply(data,”[[”,2)
4

5 wordcount= function(map.keys, map.values){
6 keys <� unlist(strsplit(unlist(map.values), split=’ ’))
7 value <� 1
8 lapply(keys, FUN=paste, value=value)
9 }

10

11 wordcount(map.keys,map.values)

We create the list (Line 1) required to pass to the RHIPE rhwatch function, and split
it into the key value pairs the mapper function will receive. Then create a function with a
key, value signature Line 5 that will process the data.

In more general command line environment, Hadoop Streaming functionality can be
tested using the following sequence of commands.

1 $ cat book.txt | ./mapper.R | sort k1,1 | ./reducer.R

15

6 Conclusion

The wordcount testing concluded RHIPE to be the preferred way of integrating R with
Hadoop. Yet, when compared to Python we have discovered weaknesses in R itself, espe-
cially when many I/O operations are performed. Python constantly outmaneuvered R by
approximately 35% and failed in extremely few cases. While Python might be more e�cient,
R is more convenient for scientific purposes. With the choice of R, RHIPE consistently had
a 35% better performance as compared to RHadoop and R Streaming.

Though Wordcount might not be an all encompassing benchmark, it is a good starting
point for performance modeling of R and Hadoop integrations.

Acknowledgement

We sincerely appreciate Dr. Weijia Xu for mentoring us throughout the semester and Ruizhu
Huang for valuable tips on the topic.

References

(1) Managing the Deluge of ’Big Data’ From Space. 2013; http://www.jpl.nasa.gov/

news/news.php?release=2013-299.

(2) Shicai Wang, D. J. I. E. F. G. A. O., Ioannis Pandis; Guo, Y. Optimising parallel R
correlation matrix calculations on gene expression data using MapReduce. 2014; http:
//www.biomedcentral.com/content/pdf/s12859-014-0351-9.pdf.

(3) Saumya Salian, D. G. H. Big Data Analytics Predicting Risk of Readmissions of Diabetic
Patients. 2013; http://www.ijsr.net/archive/v4i4/SUB152923.pdf.

(4) Hadoop Streaming. 2013; http://hadoop.apache.org/docs/r1.2.1/streaming.html.

(5) Ding, M.; Zheng, L.; Lu, Y.; Li, L.; Guo, S.; Guo, M. More Convenient More Overhead:
The Performance Evaluation of Hadoop Streaming. Proceedings of the 2011 ACM Sym-
posium on Research in Applied Computation. New York, NY, USA, 2011; pp 307–313.

(6) RHIPE v0.65.3 documentation. 2010; https://www.datadr.org/doc/serialize.html.

(7) Google Books, Ngram Viewer. 2013; https://storage.googleapis.com/books/

ngrams/books/datasetsv2.html.

(8) MapReduce using Hadoop Streaming. 2010; https://github.com/

RevolutionAnalytics/rmr2/blob/master/pkg/man/mapreduce.Rd.

16

7 Appendix

7.1 Code Used

These are the mapper and reducer functions used in thewordcounttesting.

7.1.1 Python Streaming

Listing 3: Mapper.py

1 #!/usr/bin/env python
2 import sys
3

4 # input comes from STDIN (standard input)
5 for line in sys.stdin:
6 # remove leading and trailing whitespace
7 line = line.strip()
8 # split the line into words
9 words = line.split()

10 # increase counters
11 for word in words:
12 # write the results to STDOUT (standard output);
13 # what we output here will be the input for the
14 # Reduce step, i.e. the input for reducer.py
15 #
16 # tab�delimited; the trivial word count is 1
17 print ’%s\t%s’ % (word, 1)

Listing 4: Reducer.py

1 #!/usr/bin/env python
2

3 from operator import itemgetter
4 import sys
5

6 current word = None
7 current count = 0
8 word = None
9

10 # input comes from STDIN
11 for line in sys.stdin:
12 # remove leading and trailing whitespace
13 line = line.strip()
14

15 # parse the input we got from mapper.py
16 word, count = line.split(’\t’, 1)
17

18 # convert count (currently a string) to int

17

19 try:
20 count = int(count)
21 except ValueError:
22 # count was not a number, so silently
23 # ignore/discard this line
24 continue
25

26 # this IF�switch only works because Hadoop sorts map output
27 # by key (here: word) before it is passed to the reducer
28 if current word == word:
29 current count += count
30 else:
31 if current word:
32 # write result to STDOUT
33 print ’%s\t%s’ % (current word, current count)
34 current count = count
35 current word = word
36

37 # do not forget to output the last word if needed!
38 if current word == word:
39 print ’%s\t%s’ % (current word, current count)

7.1.2 R Streaming

Listing 5: Mapper.R

1 #!/usr/bin/env Rscript
2 #https://github.com/glennklockwood/paraR
3

4 options(warn=�1)
5

6 outputCount= function(key, value) {
7 cat(key,’\t’,value,’\n’,sep=’’)
8 }
9

10 stdin <� file(’stdin’, open=’r’)
11

12 while (length(line <� readLines(stdin, n=1, warn=FALSE)) > 0) {
13 #line <� gsub(’(ˆ\\s+|\\s+$)’, ’’, line)
14 keys <� unlist(strsplit(line, split=’ ’,fixed=TRUE))
15 value <� 1
16 lapply(keys, FUN=outputCount, value=value)
17 }
18 close(stdin)

Listing 6: Reducer.R

18

1 #!/usr/bin/env Rscript
2 #https://github.com/glennklockwood/paraR
3 options(warn=�1)
4

5 last key <� ””
6 running total <� 0
7 stdin <� file(’stdin’,’r’)
8

9 outputCount <� function(word,count){
10 cat(last key,’\t’,running total,’\n’,sep=’’)
11 }
12

13

14 while (length(line <� readLines(stdin, n=1 , warn=FALSE)) > 0) {
15 keyvalue <� unlist(strsplit(line, split=’\t’, fixed=TRUE))
16 this key <� keyvalue[[1]]
17 value <� as.numeric(keyvalue[[2]])
18

19 if (identical(last key,this key)) {
20 running total <� running total + value
21 }
22 else {
23 if (!identical(last key,””)) {
24 outputCount(last key,value)
25 }
26 running total <� value
27 last key <� this key
28 }
29 }
30

31 outputCount(last key,running total)
32 close(stdin)

7.1.3 RHadoop

Listing 7: RHadoop mapper /reducer functions

1 #!/usr/bin/env Rscript
2 library(rmr2)
3

4 bp =
5 list(
6 hadoop =
7 list(
8 D = paste(”mapred.job.name=”,”RHadoop wordcount”, sep=’’),
9 D = paste(”mapreduce.job.maps=”, ”10”, sep=’’),

10 D = paste(”mapred.reduce.tasks=”, ”5”, sep=’’)

19

11))
12

13 rmr.options(backend.parameters = bp)
14 rmr.options(”backend.parameters”)
15

16 wordcount =
17 function(input, output = NULL, pattern = ” ”){
18 wc.map = function(., lines) {
19 keyval(unlist(strsplit(
20 x = lines,
21 split = pattern, fixed = TRUE)),1)}
22

23 wc.reduce = function(word, counts) {
24 keyval(word, sum(counts))}
25

26 wc.vectorized.reduce =
27 function(k,vv) {
28 vv = split(vv, as.data.frame(k), drop = TRUE)
29 keyval(names(vv), vsum(vv))}
30

31

32 mapreduce(
33 input = input,
34 output = output,
35 input.format = ”text”,
36 map = wc.map,
37 #reduce = wc.reduce, // when vectorized.reduce = F
38 reduce = wc.vectorized.reduce,
39 vectorized.reduce = TRUE,
40 in.memory.combine = TRUE,
41 combine = TRUE
42)}
43

44 wordcount(”hdfs:///sample.txt”)

7.1.4 RHIPE

Listing 8: RHIPE mapper/reducer functions

1 #!/usr/bin/env Rscript
2 library(Rhipe)
3

4 rhinit()
5 rhoptions(runner = ’sh /home/dotcz12/R/lib64/R/library/Rhipe/bin/RhipeMapReduce.sh’)
6

7 mapred = list(
8 mapred.max.split.size=as.integer(1024⇤1024⇤num mappers),

20

9 mapreduce.job.reduces=num reducers #CDH3,4
10)
11

12 mapper <� expression({
13 keys <� unlist(strsplit(unlist(map.values), split=” ”))
14 value <� 1
15 lapply(keys, FUN=rhcollect, value=value)
16 })
17

18 reducer <� expression(
19 pre = {
20 running total <� 0
21 },
22 reduce = {
23 running total <� sum(running total, unlist(reduce.values))
24 },
25 post = {
26 rhcollect(reduce.key, running total)
27 }
28)
29

30 rhipe.results <� rhwatch(
31 map=mapper, reduce=reducer,
32 input=rhfmt(”hdfs:///sample.txt”, type=”text”),
33 output=”hdfs:///output sample”,
34 jobname=”rhipe�wordcount”,
35 mapred=mapred,
36 combiner=TRUE)

21

